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Abstract
We consider the random sequence xn = xn−1 + γ xq , with γ > 0, where
q = 0, 1, . . . , n − 1 is chosen randomly from a probability distribution Pn(q).
When all q are chosen with equal probability, i.e. Pn(q) = 1/n, we obtain an
exact solution for the mean 〈xn〉 and the divergence of the second moment

〈
x2

n

〉
as functions of n and γ . For γ = 1 we examine the divergence of the mean
value of xn, as a function of n, for the random sequences generated by power
law and exponential Pn(q) and for the non-random sequence Pn(q) = δq,β(n−1).

PACS numbers: 02.50.Cw, 05.40.−a, 89.75.Hc

1. Introduction

Random sequences form a fundamental part of many models in fields ranging from science and
technology to sociology and economics. From the random walk, models of packet transport
on a network to models of income distribution and share price movement, a random sequence
plays some role in the basic model.

Recently, there has been much interest in the behaviour of the random Fibonacci series

Fn+1 = Fn ± αFn−1 (1)

where the plus or minus sign is taken with equal probability. It has been shown [1, 2] that
there is a critical value of α, αc ≈ 0.703, such that, as n → ∞, |Fn| diverges exponentially
when α > αc and decays exponentially to 0 for α < αc.

Whilst sequences of this type do not correspond directly to any physical systems, they
are technically very similar to a variety of problems in one-dimensional disordered systems
[3], such as the Anderson model of electrons in a metal with impurities. Here the value of the
sequence in position n is analogous to the wavefunction on site n, and the randomness in the
sequence is analogous to quenched randomness in the on-site potential and the hopping rates.
These systems also have much in common with the Anderson model on a tree [4] and on a
dilute mean-field lattice [5]. Quantities of interest in the Anderson model, such as the density
of states, the position of the mobility edge, the localization length and the inverse participation
ratio, all have counterparts in these random sequences.
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In this paper we consider the random sequence

xn = xn−1 + γ xq (2)

with γ > 0 and without loss of generality, x0 = 1, where q is a random variable chosen
from the integers q = 0, 1, . . . , n − 1 with probability Pn(q). This is a generalization of the
sequence produced by Pn(q) = 1/n and γ = 1, which was recently considered in [6]. There
it was shown that asymptotically 〈xn〉 ∼ n−1/4 exp(2

√
n) as n → ∞ and that the system

exhibits multiscaling so that the typical behaviour of the sequence will deviate substantially
from the behaviour of the average [6].

This sequence is very similar to a localization problem described by a discretized
Schrödinger equation on a line in which the hopping rates are asymmetric. The rules of
the electronic mobility, which make the physical system analogous to the sequence, are that
at each time step a particle can either hop to its left with rate γ , or to its right with rate 1.
If it hops to its left, it will always hop to the same site, chosen initially at random from the
probability distribution Pn(q). If it hops to its right, it will always hop to its nearest neighbour.

In general the mean of the sequence in equation (2) exhibits at least two different types
of behaviour. Heuristically speaking, if Pn(q) is such that it is dominated by q of order n,
then 〈xq〉 will be of order xn−1 and the sequence will grow exponentially. Conversely if Pn(q)

is dominated by q of order 1, then xq will be of order x0 and 〈xn〉 will grow linearly in n.
Between these two extremes other, more complex, types of behaviour are possible. In this
paper we consider the mean and variance of the sequence generated by a uniform Pn(q), as
well as the sequences generated with a power law and exponential Pn(q), and the non-random
sequence Pn(q) = δq,β(n−1). In the latter cases we find the critical values of the parameters
in these distributions that determine the onset of linear and exponential growth, in addition to
determining the behaviour of the sequence between these regions.

2. Random sequences

In this and the next two sections we consider random sequences in which the random variable
q is chosen from a distribution Pn(q) which is separable. In other words Pn(q) = P(q)/bn

where P(q) is independent of n and

bn =
n−1∑
q=0

P(q). (3)

In sequences of this type the average value of xn,An = 〈xn〉, obeys

An = An−1 +
γ

bn

n−1∑
q=0

P(q)Aq. (4)

For general P(q), when γ = 1, multiplying this equation through by bn, and subtracting the
equivalent expression for n + 1, reveals

An+1 − 2An +
bn

bn+1
An−1 = 0. (5)

There is an interesting connection between equation (5) and orthogonal polynomials. It
is well known that the recurrence

fk+1(x) − xfk(x) + akfk−1(x) = 0 ak > 0 f−1 = 0 f0 = 1 (6)

defines a family of symmetric monic polynomials with respect to a positive measure on the
real line [7]. Thus, An in equation (5) may be viewed as the value of the corresponding
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orthogonal polynomial fk(x) with ak = bk

bk+1
at x = 2. Moreover, as fk(2) �= 0, the measure

will be supported on a subset of [−2, 2]. A linear change of variables yields the polynomials
qk(x) = 2−kfk(2x) orthogonal on a subset of [−1, 1], satisfying

qk+1(x) − xqk(x) +
ak

4
qk−1(x) = 0. (7)

Thus if we consider the sequence P(q) = 1 and hence bn = n, then we obtain the equation
for An in [6],

An+1 − 2An +
n

n + 1
An−1 = 0. (8)

The solution of this equation is in general An = 2nP λ
n

(
1; 1

2 , 0
)
, where λ is either 1

2 or 3
2 and

P λ
n (x; a, b) is a Pollaczek polynomial [7]. This is equal to the nth Laguerre polynomial [8],

Ln(−1). Thus the exact solution for the average of xn is

〈xn〉 = Ln(−1). (9)

As n → ∞ we recover

〈xn〉 ∼ k1n
−1/4 exp(2

√
n) (10)

with k1 = 1/2
√

eπ ≈ 0.1711 [9]. This asymptotic form was obtained in [6] by using the
WKB method [10] in equation (8).

Using the same approach, we can easily show that for γ �= 1 but P(q) = 1 and hence
bn = n, for large n,

An+1 −
(

2 +
γ − 1

n + 1

)
An +

n

n + 1
An−1 = 0 (11)

which has an exact solution 〈xn〉 = Ln(−γ ). Asymptotically, 〈xn〉 ∼ kγ n−1/4 exp(2
√

γ n).
In [6], it was shown numerically that when P(q) = 1 and γ = 1 the average of the

sequence does not characterize its growth, and that the kth moment grows faster than the rth
moment for all r < k. We can see this analytically by calculating the asymptotic growth of
the second moment of the sequence with P(q) = 1 and general γ > 0. This can be done by
introducing two averages

Vn = 〈
x2

n

〉
and Mn =

n−1∑
r=0

〈xnxr〉. (12)

Using equation (2) it is a simple matter to show that Vn and Mn obey the coupled iterations

(n + 1)Vn+1 − (2n + (γ + 1)2)Vn + (n + 2γ )Vn−1 = 2γ (Mn − Mn−1) (13)

and

(n + 1)Mn+1 − (2n + 2γ + 1)Mn + nMn−1 = (n + γ + 1)Vn − nVn−1. (14)

These equations can be written in the continuum limit, and then obey the coupled second-order
differential equations

(tV (t))′′ − (2γ + 1)V ′(t) − γ 2V (t) = 2γM ′(t) (15)

and

(tM(t))′′ − M ′(t) − 2γM(t) = (tV (t))′ + V ′(t) + γV (t). (16)

In the limit t → ∞, we can assume that V (t) ∼ tφ exp(δ
√

t) and M(t) ∼ tφ+1/2 exp(δ
√

t).
Substituting these forms into equations (15) and (16) and equating the leading-order terms
gives

δ =
√

2γ (4 + γ +
√

16 + γ 2). (17)
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When γ = 1 we have δ =
√

2(5 +
√

17) ≈ 4.27. This compares well with [6], where the
value δ ≈ 4.3 was obtained numerically. Note that, dropping pre-factors, the mean diverges as
exp(2

√
γ n) and the second moment as exp(δ

√
n), so that as δ > 2

√
γ for all γ ,

〈
x2

n

〉
diverges

faster than 〈xn〉 for all γ . As γ → ∞, δ → 2
√

γ and as γ → 0 then δ → 4
√

γ .

3. Power law Pn(q)

Taking

P(q) = (q + 1)α (18)

and γ = 1 yields four different classes of behaviour for α > −1, α = −1,−2 < α < −1 and
α < −2. We will deal with these in turn.

3.1. α > −1

Here we have bn/bn+1 = 1 − (α + 1)/n + O(1/n2) for large n and hence equation (5) becomes

An+1 − 2An + An−1 = α + 1

n
An−1. (19)

As before, this equation can be solved exactly, this time in terms of generalized Laguerre
polynomials [8]. In particular, An ∼ L(−α)

n (−(α + 1)). Hence as n → ∞ we have

An ∼ cα

1

n
2α+1

4

exp{2
√

(α + 1)n} (20)

with cα = (α + 1)(2α−1)/4 e−(α+1)/2/2
√

π .

3.2. α = −1

When α = −1 we have bn/bn+1 = 1 − 1/(n + 1) log n + O(1/n(log n)2) and

An+1 − 2An + An−1 = 1

(n + 1) log n
An−1 (21)

for large n. Using the WKB [10] approximation we find that

An ∼ 1√
n log n

exp

{
2
√

n

log n

}
. (22)

3.3. −2 < α < −1

When α < −1 we have bn/bn+1 = 1 − (n + 1)α/ζ(−α) + O(nα−1) where ζ is the Riemann
zeta function [11]. Hence for large n equation (5) can be rewritten as

An+1 − 2An + An−1 = (n + 1)α

ζ(−α)
An−1 (23)

and using the WKB approximation [10] yields

An ∼ 1

n
α
4

exp

{
2

α + 2

n1+α/2

√
ζ(−α)

}
(24)

for −2 < α < −1. For α = −2 the divergent asymptotic behaviour of An is purely power
law with

An ∼ n
1
2 + 1√

ζ(2) (25)

where the exponent 1/2 + 1/
√

ζ(2) ≈ 1.108 is greater than 1.
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3.4. α < −2

When α < −2 then the right-hand side of equation (23) can be neglected and as
n → ∞, An ∼ n.

4. Exponential Pn(q)

Here we consider P(q) = aq . When a = 1 the solution in equation (9) is recovered. When
a < 1 then bn → 1/(1 − a) as n → ∞ and An = n. When a > 1 then bn ∼ an/(a − 1) as
n → ∞ and hence

An ∼
[

1 +

√
1 − 1

a

]n

. (26)

5. Non-random sequence

Consider the non-random sequence

xn = xn−1 + xβ(n−1) (27)

where 0 � β � 1 is fixed. If β = 0 then xn = n whereas if β = 1 then xn = 2n. For
0 < β < 1 we can solve the asymptotics of this sequence by converting equation (27) into a
continuous first-order non-local differential equation

dx

dt
= x(βt) (28)

where t is the continuous counterpart of n. By substituting a power-series solution for x(t)

into equation (28) and solving for the coefficients, we can find

x(t) =
∞∑

r=0

t rβ
1
2 r(r−1)

r!
. (29)

For large t this summation is dominated by the term r ∼ log(t)/ log(1/β) and hence it is
possible to evaluate the summation for large t and show that for large n

xn ∼ exp

{
(log n)2

2 log
(

1
β

)
}

. (30)

6. Summary

We have generalized previous studies to model random sequences with a tuneable memory.
We have obtained an exact solution for the mean of the sequence xn = xn−1 + γ xq when
q = 0, 1, 2, . . . , n − 1 is chosen at random with probability Pn(q) = 1/n. We showed
analytically how the second moment

〈
x2

n

〉
diverges faster than the mean 〈xn〉. We also

considered more general forms of Pn(q), power law, exponential and the non-random sequence
Pn(q) = δq,β(n−1). We found that these sequences exhibit exponential growth when Pn(q) is
dominated by q ∼ n and linear growth when Pn(q) is dominated by q ∼ 1. Between these
two extremes an intermediate type of growth occurs. We were able to calculate this growth
and determine the boundaries of the different types of behaviour, which are summarized in
table 1. Though the results in these sections were obtained for γ = 1, the critical values of
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Table 1. Summary of results.

Linear Intermediate Exponential

Pn(q) ∼ (q + 1)α α < −2 α > −2 –
Pn(q) ∼ aq a < 1 a = 1 a > 1
Pn(q) = δq,β(n−1) β = 0 0 < β < 1 β = 1

the parameters at the boundaries of the different regimes are valid for all γ > 0, a general γ

merely changes the form of the divergence in the intermediate regime.
This sequence, although much simpler than the random Fibonacci sequence studied in

[1, 2], as no negative numbers are allowed, displays a surprisingly rich phase space and a wide
range of different types of behaviour.
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