Growing random sequences

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 372365
(http://iopscience.iop.org/0305-4470/37/6/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.65
The article was downloaded on 02/06/2010 at 19:52

Please note that terms and conditions apply.

Growing random sequences

I Krasikov, G J Rodgers and C E Tripp
Department of Mathematical Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

Received 8 October 2003, in final form 18 November 2003
Published 28 January 2004
Online at stacks.iop.org/JPhysA/37/2365 (DOI: 10.1088/0305-4470/37/6/026)

Abstract

We consider the random sequence $x_{n}=x_{n-1}+\gamma x_{q}$, with $\gamma>0$, where $q=0,1, \ldots, n-1$ is chosen randomly from a probability distribution $P_{n}(q)$. When all q are chosen with equal probability, i.e. $P_{n}(q)=1 / n$, we obtain an exact solution for the mean $\left\langle x_{n}\right\rangle$ and the divergence of the second moment $\left\langle x_{n}^{2}\right\rangle$ as functions of n and γ. For $\gamma=1$ we examine the divergence of the mean value of x_{n}, as a function of n, for the random sequences generated by power law and exponential $P_{n}(q)$ and for the non-random sequence $P_{n}(q)=\delta_{q, \beta(n-1)}$.

PACS numbers: $02.50 . \mathrm{Cw}, 05.40 .-\mathrm{a}, 89.75 . \mathrm{Hc}$

1. Introduction

Random sequences form a fundamental part of many models in fields ranging from science and technology to sociology and economics. From the random walk, models of packet transport on a network to models of income distribution and share price movement, a random sequence plays some role in the basic model.

Recently, there has been much interest in the behaviour of the random Fibonacci series

$$
\begin{equation*}
F_{n+1}=F_{n} \pm \alpha F_{n-1} \tag{1}
\end{equation*}
$$

where the plus or minus sign is taken with equal probability. It has been shown [1, 2] that there is a critical value of $\alpha, \alpha_{c} \approx 0.703$, such that, as $n \rightarrow \infty,\left|F_{n}\right|$ diverges exponentially when $\alpha>\alpha_{c}$ and decays exponentially to 0 for $\alpha<\alpha_{c}$.

Whilst sequences of this type do not correspond directly to any physical systems, they are technically very similar to a variety of problems in one-dimensional disordered systems [3], such as the Anderson model of electrons in a metal with impurities. Here the value of the sequence in position n is analogous to the wavefunction on site n, and the randomness in the sequence is analogous to quenched randomness in the on-site potential and the hopping rates. These systems also have much in common with the Anderson model on a tree [4] and on a dilute mean-field lattice [5]. Quantities of interest in the Anderson model, such as the density of states, the position of the mobility edge, the localization length and the inverse participation ratio, all have counterparts in these random sequences.

In this paper we consider the random sequence

$$
\begin{equation*}
x_{n}=x_{n-1}+\gamma x_{q} \tag{2}
\end{equation*}
$$

with $\gamma>0$ and without loss of generality, $x_{0}=1$, where q is a random variable chosen from the integers $q=0,1, \ldots, n-1$ with probability $P_{n}(q)$. This is a generalization of the sequence produced by $P_{n}(q)=1 / n$ and $\gamma=1$, which was recently considered in [6]. There it was shown that asymptotically $\left\langle x_{n}\right\rangle \sim n^{-1 / 4} \exp (2 \sqrt{n})$ as $n \rightarrow \infty$ and that the system exhibits multiscaling so that the typical behaviour of the sequence will deviate substantially from the behaviour of the average [6].

This sequence is very similar to a localization problem described by a discretized Schrödinger equation on a line in which the hopping rates are asymmetric. The rules of the electronic mobility, which make the physical system analogous to the sequence, are that at each time step a particle can either hop to its left with rate γ, or to its right with rate 1 . If it hops to its left, it will always hop to the same site, chosen initially at random from the probability distribution $P_{n}(q)$. If it hops to its right, it will always hop to its nearest neighbour.

In general the mean of the sequence in equation (2) exhibits at least two different types of behaviour. Heuristically speaking, if $P_{n}(q)$ is such that it is dominated by q of order n, then $\left\langle x_{q}\right\rangle$ will be of order x_{n-1} and the sequence will grow exponentially. Conversely if $P_{n}(q)$ is dominated by q of order 1 , then x_{q} will be of order x_{0} and $\left\langle x_{n}\right\rangle$ will grow linearly in n. Between these two extremes other, more complex, types of behaviour are possible. In this paper we consider the mean and variance of the sequence generated by a uniform $P_{n}(q)$, as well as the sequences generated with a power law and exponential $P_{n}(q)$, and the non-random sequence $P_{n}(q)=\delta_{q, \beta(n-1)}$. In the latter cases we find the critical values of the parameters in these distributions that determine the onset of linear and exponential growth, in addition to determining the behaviour of the sequence between these regions.

2. Random sequences

In this and the next two sections we consider random sequences in which the random variable q is chosen from a distribution $P_{n}(q)$ which is separable. In other words $P_{n}(q)=P(q) / b_{n}$ where $P(q)$ is independent of n and

$$
\begin{equation*}
b_{n}=\sum_{q=0}^{n-1} P(q) \tag{3}
\end{equation*}
$$

In sequences of this type the average value of $x_{n}, A_{n}=\left\langle x_{n}\right\rangle$, obeys

$$
\begin{equation*}
A_{n}=A_{n-1}+\frac{\gamma}{b_{n}} \sum_{q=0}^{n-1} P(q) A_{q} \tag{4}
\end{equation*}
$$

For general $P(q)$, when $\gamma=1$, multiplying this equation through by b_{n}, and subtracting the equivalent expression for $n+1$, reveals

$$
\begin{equation*}
A_{n+1}-2 A_{n}+\frac{b_{n}}{b_{n+1}} A_{n-1}=0 \tag{5}
\end{equation*}
$$

There is an interesting connection between equation (5) and orthogonal polynomials. It is well known that the recurrence

$$
\begin{equation*}
f_{k+1}(x)-x f_{k}(x)+a_{k} f_{k-1}(x)=0 \quad a_{k}>0 \quad f_{-1}=0 \quad f_{0}=1 \tag{6}
\end{equation*}
$$

defines a family of symmetric monic polynomials with respect to a positive measure on the real line [7]. Thus, A_{n} in equation (5) may be viewed as the value of the corresponding
orthogonal polynomial $f_{k}(x)$ with $a_{k}=\frac{b_{k}}{b_{k+1}}$ at $x=2$. Moreover, as $f_{k}(2) \neq 0$, the measure will be supported on a subset of $[-2,2]$. A linear change of variables yields the polynomials $q_{k}(x)=2^{-k} f_{k}(2 x)$ orthogonal on a subset of $[-1,1]$, satisfying

$$
\begin{equation*}
q_{k+1}(x)-x q_{k}(x)+\frac{a_{k}}{4} q_{k-1}(x)=0 . \tag{7}
\end{equation*}
$$

Thus if we consider the sequence $P(q)=1$ and hence $b_{n}=n$, then we obtain the equation for A_{n} in [6],

$$
\begin{equation*}
A_{n+1}-2 A_{n}+\frac{n}{n+1} A_{n-1}=0 \tag{8}
\end{equation*}
$$

The solution of this equation is in general $A_{n}=2^{n} P_{n}^{\lambda}\left(1 ; \frac{1}{2}, 0\right)$, where λ is either $\frac{1}{2}$ or $\frac{3}{2}$ and $P_{n}^{\lambda}(x ; a, b)$ is a Pollaczek polynomial [7]. This is equal to the nth Laguerre polynomial [8], $L_{n}(-1)$. Thus the exact solution for the average of x_{n} is

$$
\begin{equation*}
\left\langle x_{n}\right\rangle=L_{n}(-1) \tag{9}
\end{equation*}
$$

As $n \rightarrow \infty$ we recover

$$
\begin{equation*}
\left\langle x_{n}\right\rangle \sim k_{1} n^{-1 / 4} \exp (2 \sqrt{n}) \tag{10}
\end{equation*}
$$

with $k_{1}=1 / 2 \sqrt{e \pi} \approx 0.1711$ [9]. This asymptotic form was obtained in [6] by using the WKB method [10] in equation (8).

Using the same approach, we can easily show that for $\gamma \neq 1$ but $P(q)=1$ and hence $b_{n}=n$, for large n,

$$
\begin{equation*}
A_{n+1}-\left(2+\frac{\gamma-1}{n+1}\right) A_{n}+\frac{n}{n+1} A_{n-1}=0 \tag{11}
\end{equation*}
$$

which has an exact solution $\left\langle x_{n}\right\rangle=L_{n}(-\gamma)$. Asymptotically, $\left\langle x_{n}\right\rangle \sim k_{\gamma} n^{-1 / 4} \exp (2 \sqrt{\gamma n})$.
In [6], it was shown numerically that when $P(q)=1$ and $\gamma=1$ the average of the sequence does not characterize its growth, and that the k th moment grows faster than the r th moment for all $r<k$. We can see this analytically by calculating the asymptotic growth of the second moment of the sequence with $P(q)=1$ and general $\gamma>0$. This can be done by introducing two averages

$$
\begin{equation*}
V_{n}=\left\langle x_{n}^{2}\right\rangle \quad \text { and } \quad M_{n}=\sum_{r=0}^{n-1}\left\langle x_{n} x_{r}\right\rangle . \tag{12}
\end{equation*}
$$

Using equation (2) it is a simple matter to show that V_{n} and M_{n} obey the coupled iterations

$$
\begin{equation*}
(n+1) V_{n+1}-\left(2 n+(\gamma+1)^{2}\right) V_{n}+(n+2 \gamma) V_{n-1}=2 \gamma\left(M_{n}-M_{n-1}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
(n+1) M_{n+1}-(2 n+2 \gamma+1) M_{n}+n M_{n-1}=(n+\gamma+1) V_{n}-n V_{n-1} \tag{14}
\end{equation*}
$$

These equations can be written in the continuum limit, and then obey the coupled second-order differential equations

$$
\begin{equation*}
(t V(t))^{\prime \prime}-(2 \gamma+1) V^{\prime}(t)-\gamma^{2} V(t)=2 \gamma M^{\prime}(t) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
(t M(t))^{\prime \prime}-M^{\prime}(t)-2 \gamma M(t)=(t V(t))^{\prime}+V^{\prime}(t)+\gamma V(t) . \tag{16}
\end{equation*}
$$

In the limit $t \rightarrow \infty$, we can assume that $V(t) \sim t^{\phi} \exp (\delta \sqrt{t})$ and $M(t) \sim t^{\phi+1 / 2} \exp (\delta \sqrt{t})$. Substituting these forms into equations (15) and (16) and equating the leading-order terms gives

$$
\begin{equation*}
\delta=\sqrt{2 \gamma\left(4+\gamma+\sqrt{16+\gamma^{2}}\right)} \tag{17}
\end{equation*}
$$

When $\gamma=1$ we have $\delta=\sqrt{2(5+\sqrt{17})} \approx 4.27$. This compares well with [6], where the value $\delta \approx 4.3$ was obtained numerically. Note that, dropping pre-factors, the mean diverges as $\exp (2 \sqrt{\gamma n})$ and the second moment as $\exp (\delta \sqrt{n})$, so that as $\delta>2 \sqrt{\gamma}$ for all $\gamma,\left\langle x_{n}^{2}\right\rangle$ diverges faster than $\left\langle x_{n}\right\rangle$ for all γ. As $\gamma \rightarrow \infty, \delta \rightarrow 2 \sqrt{\gamma}$ and as $\gamma \rightarrow 0$ then $\delta \rightarrow 4 \sqrt{\gamma}$.

3. Power law $P_{n}(q)$

Taking

$$
\begin{equation*}
P(q)=(q+1)^{\alpha} \tag{18}
\end{equation*}
$$

and $\gamma=1$ yields four different classes of behaviour for $\alpha>-1, \alpha=-1,-2<\alpha<-1$ and $\alpha<-2$. We will deal with these in turn.
3.1. $\alpha>-1$

Here we have $b_{n} / b_{n+1}=1-(\alpha+1) / n+O\left(1 / n^{2}\right)$ for large n and hence equation (5) becomes

$$
\begin{equation*}
A_{n+1}-2 A_{n}+A_{n-1}=\frac{\alpha+1}{n} A_{n-1} \tag{19}
\end{equation*}
$$

As before, this equation can be solved exactly, this time in terms of generalized Laguerre polynomials [8]. In particular, $A_{n} \sim L_{n}^{(-\alpha)}(-(\alpha+1))$. Hence as $n \rightarrow \infty$ we have

$$
\begin{equation*}
A_{n} \sim c_{\alpha} \frac{1}{n^{\frac{2 \alpha+1}{4}}} \exp \{2 \sqrt{(\alpha+1) n}\} \tag{20}
\end{equation*}
$$

with $c_{\alpha}=(\alpha+1)^{(2 \alpha-1) / 4} \mathrm{e}^{-(\alpha+1) / 2} / 2 \sqrt{\pi}$.
3.2. $\alpha=-1$

When $\alpha=-1$ we have $b_{n} / b_{n+1}=1-1 /(n+1) \log n+O\left(1 / n(\log n)^{2}\right)$ and

$$
\begin{equation*}
A_{n+1}-2 A_{n}+A_{n-1}=\frac{1}{(n+1) \log n} A_{n-1} \tag{21}
\end{equation*}
$$

for large n. Using the WKB [10] approximation we find that

$$
\begin{equation*}
A_{n} \sim \frac{1}{\sqrt{n} \log n} \exp \left\{2 \sqrt{\frac{n}{\log n}}\right\} \tag{22}
\end{equation*}
$$

3.3. $-2<\alpha<-1$

When $\alpha<-1$ we have $b_{n} / b_{n+1}=1-(n+1)^{\alpha} / \zeta(-\alpha)+O\left(n^{\alpha-1}\right)$ where ζ is the Riemann zeta function [11]. Hence for large n equation (5) can be rewritten as

$$
\begin{equation*}
A_{n+1}-2 A_{n}+A_{n-1}=\frac{(n+1)^{\alpha}}{\zeta(-\alpha)} A_{n-1} \tag{23}
\end{equation*}
$$

and using the WKB approximation [10] yields

$$
\begin{equation*}
A_{n} \sim \frac{1}{n^{\frac{\alpha}{4}}} \exp \left\{\frac{2}{\alpha+2} \frac{n^{1+\alpha / 2}}{\sqrt{\zeta(-\alpha)}}\right\} \tag{24}
\end{equation*}
$$

for $-2<\alpha<-1$. For $\alpha=-2$ the divergent asymptotic behaviour of A_{n} is purely power law with

$$
\begin{equation*}
A_{n} \sim n^{\frac{1}{2}+\frac{1}{\sqrt{5(2)}}} \tag{25}
\end{equation*}
$$

where the exponent $1 / 2+1 / \sqrt{\zeta(2)} \approx 1.108$ is greater than 1 .

3.4. $\alpha<-2$

When $\alpha<-2$ then the right-hand side of equation (23) can be neglected and as $n \rightarrow \infty, A_{n} \sim n$.

4. Exponential $\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{q})$

Here we consider $P(q)=a^{q}$. When $a=1$ the solution in equation (9) is recovered. When $a<1$ then $b_{n} \rightarrow 1 /(1-a)$ as $n \rightarrow \infty$ and $A_{n}=n$. When $a>1$ then $b_{n} \sim a^{n} /(a-1)$ as $n \rightarrow \infty$ and hence

$$
\begin{equation*}
A_{n} \sim\left[1+\sqrt{1-\frac{1}{a}}\right]^{n} \tag{26}
\end{equation*}
$$

5. Non-random sequence

Consider the non-random sequence

$$
\begin{equation*}
x_{n}=x_{n-1}+x_{\beta(n-1)} \tag{27}
\end{equation*}
$$

where $0 \leqslant \beta \leqslant 1$ is fixed. If $\beta=0$ then $x_{n}=n$ whereas if $\beta=1$ then $x_{n}=2^{n}$. For $0<\beta<1$ we can solve the asymptotics of this sequence by converting equation (27) into a continuous first-order non-local differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=x(\beta t) \tag{28}
\end{equation*}
$$

where t is the continuous counterpart of n. By substituting a power-series solution for $x(t)$ into equation (28) and solving for the coefficients, we can find

$$
\begin{equation*}
x(t)=\sum_{r=0}^{\infty} \frac{t^{r} \beta^{\frac{1}{2} r(r-1)}}{r!} \tag{29}
\end{equation*}
$$

For large t this summation is dominated by the term $r \sim \log (t) / \log (1 / \beta)$ and hence it is possible to evaluate the summation for large t and show that for large n

$$
\begin{equation*}
x_{n} \sim \exp \left\{\frac{(\log n)^{2}}{2 \log \left(\frac{1}{\beta}\right)}\right\} \tag{30}
\end{equation*}
$$

6. Summary

We have generalized previous studies to model random sequences with a tuneable memory. We have obtained an exact solution for the mean of the sequence $x_{n}=x_{n-1}+\gamma x_{q}$ when $q=0,1,2, \ldots, n-1$ is chosen at random with probability $P_{n}(q)=1 / n$. We showed analytically how the second moment $\left\langle x_{n}^{2}\right\rangle$ diverges faster than the mean $\left\langle x_{n}\right\rangle$. We also considered more general forms of $P_{n}(q)$, power law, exponential and the non-random sequence $P_{n}(q)=\delta_{q, \beta(n-1)}$. We found that these sequences exhibit exponential growth when $P_{n}(q)$ is dominated by $q \sim n$ and linear growth when $P_{n}(q)$ is dominated by $q \sim 1$. Between these two extremes an intermediate type of growth occurs. We were able to calculate this growth and determine the boundaries of the different types of behaviour, which are summarized in table 1. Though the results in these sections were obtained for $\gamma=1$, the critical values of

Table 1. Summary of results.

	Linear	Intermediate	Exponential
$P_{n}(q) \sim(q+1)^{\alpha}$	$\alpha<-2$	$\alpha>-2$	-
$P_{n}(q) \sim a^{q}$	$a<1$	$a=1$	$a>1$
$P_{n}(q)=\delta_{q, \beta(n-1)}$	$\beta=0$	$0<\beta<1$	$\beta=1$

the parameters at the boundaries of the different regimes are valid for all $\gamma>0$, a general γ merely changes the form of the divergence in the intermediate regime.

This sequence, although much simpler than the random Fibonacci sequence studied in [1,2], as no negative numbers are allowed, displays a surprisingly rich phase space and a wide range of different types of behaviour.

Acknowledgment

We would like to thank D F Scrimshaw for useful discussions.

References

[1] Viswanath D 2000 Math. Comput. 691131
[2] Embree M and Trefethen L N 1999 Proc. R. Soc. A 4552471
[3] Luck J M 1992 Systémes Désordonnés Unidimensionnels (France: Aléa-Saclay)
[4] Derrida B and Rodgers G J 1993 J. Phys. A: Math. Gen. 26 L457
[5] Fyodorov Y V, Mirlin A D and Sommers H J 1992 J. Physique I 21571
[6] Ben-Naim E and Krapivsky P L 2002 J. Phys. A: Math. Gen. 35 L557
[7] Chihara T S 1978 An Introduction to Orthogonal Polynomials (London: Gordon and Breach)
[8] Abramowitz M and Stegun I A 1975 Handbook of Mathematical Functions (New York: Dover)
[9] Szego G 1939 Orthogonal Polynomials (Providence, RI: American Mathematical Society)
[10] Hinch E J 1991 Perturbation Methods (Cambridge: Cambridge University Press)
[11] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (London: Academic)

